Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media.
نویسندگان
چکیده
Despite a large number of developments of noble metal (or metal oxide) NP-based catalysts, it has been a great challenge to prepare high-performance recyclable catalysts with integrated functionalities that can be used in various solvent media. Here, we report on layer-by-layer (LbL) assembled multicatalysts with high catalytic performance, showing high dispersion and recycling stability in organic and aqueous media. The remarkable advantages of our approach are as follows. (i) Various metal or metal oxide NPs with desired catalytic performance can be easily incorporated into multilayered shells, forming densely packed arrays that allow one colloid to be used as a multicatalyst with highly integrated and controllable catalytic properties. (ii) Additionally, the dispersion stability of catalytic colloids in a desired solvent can be determined by the type of ultrathin outermost layer coating each colloid. (iii) Lastly, the covalent bonding between inorganic NPs and dendrimers within multilayer shells enhances the recycling stability of multicatalytic colloids. The resulting core-shell colloids including OA-Fe3O4 NPs, TOABr-Pd NPs, and OA-TiO2 NPs exhibited excellent performance in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and photocatalysis in aqueous media and in the Sonogashira coupling reaction (99% yield) in organic media. Given that the catalytic properties of recyclable colloids reported to date have entirely depended on the functionality of a single catalytic NP layer deposited onto colloids in selective solvent media, our approach provides a basis for the design and exploitation of high-performance recyclable colloids with integrated multicatalytic properties and high dispersion stability in a variety of solvents.
منابع مشابه
Invertible Polymers for the Stabilization of Nanoparticles
Novel amphiphilic polyesters with both hydrophilic and hydrophobic functionalities being alternately distributed along polymer backbones have been synthesized and characterized. The polyesters are soluble in organic and aqueous media and reveal the formation of inverse architectures whose behavior could be correlated to their chemical structure. This work offers a new approach to building up se...
متن کاملN,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The proced...
متن کاملN,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The proced...
متن کاملLong-term stabilization of foams and emulsions with in-situ formed microparticles from hydrophobic cellulose.
We report a simple method to produce foams and emulsions of extraordinary stability by using hydrophobic cellulose microparticles, which are formed in situ by a liquid-liquid dispersion technique. The hydrophobic cellulose derivative, hypromellose phthalate (HP), was initially dissolved in water-miscible solvents such as acetone and ethanol/water mixtures. As these HP stock solutions were shear...
متن کاملPoly (vinylpyrrolidone)-Grafted Silica as a Polymeric Cosolvent Catalyst for Organic Transformations in Organic and Aqueous Media
Poly (vinylpyrrolidone)-grafted silica as an organic-inorganic hybrid material was used as an effective heterogeneous polymeric cosolvent catalyst in organic reactions. This modified silica catalyzed nucleophilic displacement of alkyl halides for easy preparation of alkyl thiocyanates, alkyl cyanides, alkyl azides and alkyl aryl ethers. Furthermore, the catalyst was applied for the conversion o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 13 شماره
صفحات -
تاریخ انتشار 2016